Critical sarcomere extension required to recruit a decaying component of extra force during stretch in tetanic contractions of frog skeletal muscle fibers

نویسندگان

  • K A Edman
  • G Elzinga
  • M I Noble
چکیده

29 single frog skeletal muscle fibers were stretched during fused tetanic contractions. The force increase during stretch exhibited a breakpoint at a critical length change (average: 16.6 nm per one-half sarcomere) that was independent of velocity of stretch and of sarcomere length between 1.8 and 2.8 microns. After stretch there was an early decaying force component with a force-extension curve similar to that during stretch, which disappeared over approximately 2 s. This component was removed by a small, quick release, leaving a longer-lasting component. The critical amplitude of release required to produce this result was found by clamping the fiber to a load at which there was zero velocity of shortening. This amplitude increased with time up to the angle in the force record during stretch, was constant for the remainder of the stretch, and decreased with time after the end of stretch; it was consistently less than the critical amplitude of stretch required to reach the breakpoint of force enhancement during stretch but was also independent of sarcomere length. The force drop accompanying the critical release showed a small increase up to an optimum magnitude at 2.4--2.7 microns sarcomere length, with a decrease at longer lengths.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A quantitative model of intersarcomere dynamics during fixed-end contractions of single frog muscle fibers.

A numerical model of a muscle fiber as 400 sarcomeres, identical except for their initial lengths, was used to simulate fixed-end tetanic contractions of frog single fibers at sarcomere lengths above the optimum. The sarcomeres were represented by a lumped model, constructed from the passive and active sarcomere length-tension curves, the force-velocity curve, and the observed active elasticity...

متن کامل

Length dependence of active force production in skeletal muscle.

The sliding filament and cross-bridge theories of muscle contraction provide discrete predictions of the tetanic force-length relationship of skeletal muscle that have been tested experimentally. The active force generated by a maximally activated single fiber (with sarcomere length control) is maximal when the filament overlap is optimized and is proportionally decreased when overlap is dimini...

متن کامل

Sarcomere strain and heterogeneity correlate with injury to frog skeletal muscle fiber bundles.

Sarcomere length and first-order diffraction line width were measured by laser diffraction during elongation of activated frog tibialis anterior muscle fiber bundles (i.e., eccentric contraction) at nominal fiber strains of 10, 25, or 35% (n = 18) for 10 successive contractions. Tetanic tension, measured just before each eccentric contraction, differed significantly among strain groups and chan...

متن کامل

Contractile performance of striated muscle.

The single muscle fiber preparation provides an excellent tool for studying the mechanical behaviour of the contractile system at sarcomere level. The present article gives an overview of studies based on intact single fibers from frog and mouse skeletal muscle. The following aspects of muscle function are treated: (1) The length-tension relationship. (2) The biphasic force-velocity relationshi...

متن کامل

Contractile properties of mouse single muscle fibers, a comparison with amphibian muscle fibers.

Single fibers, 25-40 microm wide and 0.5-0.7 mm long, were isolated from the flexor digitorum brevis muscle of the mouse. Force and movement were recorded (21-27 degrees C) from the fiber as a whole and, in certain experiments, from a short marked segment that was held at constant length by feedback control. The maximum tetanic force, 368+/-57 kN/m2 (N = 10), was not significantly different fro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 78  شماره 

صفحات  -

تاریخ انتشار 1981